Hochgenaue Verfahren zur numerischen Strömungssimulation

The content of this page is only available in German.
Please go to German version of this page

Verfahren höherer Ordnung wie die Diskontinuierliche Galerkin (DG) Methode haben zu einer attraktiven Alternative zu klassischen numerischen Ansätzen entwickelt. Nachdem sie bereits seit längerer Zeit in der Forschung eingesetzt werden, steigt in den letzten Jahren auch die Verbreitung im industriellen Kontext. In dieser Vorlesung sollen daher sowohl die theoretischen Grundlagen als auch die Programmierung und praktische Anwendung des Verfahrens vermittelt werden

Allgemeine Informationen

Im theoretischen Teil wird zunächst die Verwendung von Verfahren höherer Ordnung motiviert. Im Folgenden wird die Approximation von Funktionen durch stückweise Polynome eingeführt. Dies dient als Basis für Formulierung der diskreten schwachen Form von partiellen Differentialgleichungen. Hierbei wird das Konzept des numerischen Flusses eingeführt und schließlich auf Probleme 2. Ordnung verallgemeinert. Weiterhin werden explizite und implizite Zeitdiskretisierungsschemata und geeignete Lösungsalgorithmen besprochen.

Der praktische Teil besteht aus Programmier- und Anwendungsübungen auf Basis des hauseigenen Software-Frameworks BoSSS. Mit Hilfe des Frameworks können mit geringen Aufwand flexible Löser für nicht-triviale Probleme programmiert, getestet und experimentell bezüglich Stabilität, Konvergenz, Konditionierung und Performanz untersucht werden.

Vorlesungsturnus:

Jedes Sommersemester

Vorlesungsturnus

Jedes Sommersemester

Veranstaltungstermine

Siehe Tucan

Sprechstunden

Nach Vereinbarung

Vorlesungsunterlagen

Prüfungen

Mündliche Prüfungen nach Vereinbarung

Dozent

Dr.-Ing. Florian Kummer | Juan Gutierrez, M.Sc.

Literatur